SEPARATION AND IDENTIFICATION OF PTERIDINES BY PAPER CHROMATOGRAPHY*

HANNA KWUEINY ANW FUEIN BGRGMANN
Deparminat of Pharmacology, 2he Hebrew University, Hadassah Medical School, Jerusalem (Istacl)

During our attempts to clucidate the pathways of enzymic oxidation of pteridines, it became necessary to separate mixtures that contain isomers as well as pteridincs in different stages of hydroxylation ${ }^{1}$. Paper-chromatographic analysis has been successfully applied to pterincs, extracted from biological sources ${ }^{2-6}$. Systemetic investigations regarding the suitability of various solvent mistures for the separation of pterines have been carried out by Tschesche and Korter, . Since all naturally occurring pterines have an amino group at position 2 , the solvents selected by previous investigators were of special value for the identification of basic pteridines. Albert ct al. ${ }^{9-12}$ used $R_{F^{\prime}}$ values extensively for the characterisation of their synthetic pteridines, including hydroxy derivatives devoid of amino groups. Some of the figures obtained by these authors are included in Table II. However, the methods adopted were not chosen for the purpose of analysing mixtures of closely related compounds, such as occur in the course of enzymic oxidation. Especially when there are no sidechains attached to the heterocyclic nucleus and the only difference consists in the number or position of hydroxyl groups, the problem of quantitative separation becomes much more intricate.

In the present study, we have tried to develop new methods for the ehromatographic separation and analysis of pteridines, with two main objectives in mind: (a) The procedure should coneentrate the compounds tested in woll-defined spots. This point is of great importance, in view of the fact that in many solvents certain pteridines tend to streak, while other cerivatives may give more than a single spot. The former phenomenon, the tendency to trail, may be ascribed to the presence at each point of equilibrated mixtures of molecular and ionised forms ${ }^{13}$. The latter observation, viz. the appearance of more than one circumscribed spot, may be explained by the formation of hydrates (by addition of water to a reactive double bond) that are in equilibrium with the non-hydrated structure. Naturally, if the two members of such a pair are rapidly interconvertible, it would not be easy to understand how they could separate during chromatography. Therefore one is led to assume that during chromatography, conditions are unfavourable for equilibration so that the

[^0]mixture of lydrated and non-hydrated molecules may behave as though two indepenclent entities were present. Finally, there are indications for keto-enol tautomerism in the pteridine serics (SCHOU ${ }^{14}$). If this should prove to be the case, it could lead to the appearance of 2 spots, if the tautomers do not equilibrate easily during development of the chromatogram. (b) The method should be of wide applicability, $i . e$. it should be useful for the separation of a large number of pteridines when present together.

MNTERIASS AND METHODS

Substances

The pteridines used in the present investigation were synthesised by Albert el al. \mathbf{P}^{-12} and were obtained through their courtesy. The purity of these compounds was chocked by ultraviolet spectrophotometry and by paper chromatography. Only for 2,6,7-trilyydroxypteridine has the absorption spectrum not been reported previously. An aqueous solution of this derivative apparently consists of a mixture of two different structures ${ }^{12}$; during chromatography it separated into two well-defined spots. However, the synthetic material is undoubtedly pure, because it proved identical in cvery respect with the substance resulting trom enzymic oxidation of 6,7 -diloydroxypteridine ${ }^{1}$. At pH $8,2,6,7$-trihydroxypteridine from either source exhibited maxima at 353 and $232 \mathrm{~m} \mu$. Although this spectrum is probably not characteristic for a single structure, it is very useful for identification purposes*.

Detcrmination of dissociation constants

The $p K$ values of the compounds used were detemnined spectrophotometrically, by observing the changes of $\lambda_{\text {max }}$ as a function of pH^{15}. The results are unequivocal in all cases in which a steady function is obtained. However, with some G-substituted pteridines, notably $6-1$ t, $2,6-$ and $6,7-P t$, the number and the position of the absorption maximat change suddenly in a certain pH range, so that an exact evaluation of the $p /$ values by this procedure proved impossible. In these cases, the figtures of Alberret al., who applied potentiometric methods, were used. However, it should be recalled that the $\mathrm{p} K$ values of most derivatives, containing a 6-hydroxyl group, are ambiguous; they depend on the direction of the titration. Inspection of Table I reveals certain discrepancies between our own measurements and those of the Australian investigators. These differences can be ascribed to the different procedures used. In the spectrophotometric method, the substance is dissolved in a given buffer, where it may equilibrate between all possible structures, and then its $\lambda_{\text {max }}$ is measured. In the potentiometric procedure, the pH of a given solution is changed continuously and there may not always be sufficient time for equilibration to take place. Table I demonstrates that most pteridines are very weak bases; they are converted into

[^1]References p. 172.
For examination of fluorescence or of staining properties, $10-20 \%$ of a pteridine were chromatographed with solvent 6 , with the exception of pteridine and 2-Pt. For these two substances solvent 2 was used instead (see Table II). After developing for $12 h$, the paper was air-dried and then spraved with a 0.1% solution of copper acetate in 95% ethanol. After drying, a second spray was applied with 0.5% diphenylcarbazide in 95% ethanol. When solvent 2 was used for development, the paper became impregnated with ammonium chloride and therefore stained red-brown with the above reagents. The spots of pteridine and 2-Pt, which were first detected br observation of their fluorescence, could not be recognised against the background, even when 50γ of material were used.

Substunce	$p K$						Fluoresemit	Color of complex aith Cut+ and diphenylcarbaside
	Albert et al. ${ }^{\text {y }}$-12			Our deterninations				
	Cation	Mono-anion	Bis-anion	Catim	Mono-anion	Bis-anion		
Pteridine	4.1	12.2		$3 \cdot 5$	12.5**		Violet	?
Group I								
2-Pt	<2.0	11.3		- 2.0	>12.0		Greenish	?
$4-\mathrm{Pt}$	$<\mathrm{I} .5$	7.9		~ 1.0	7.9		Blue	Orange
$6-\mathrm{Pt}$	3.7	6.7					Black-violet	(weakly orange)
${ }_{7}-\mathrm{Pt}$	-2.0	6.4		0.5	5.9		Blue-violet	Orange
Group II								
2,4-Pt	<1.0	7.9		-2.0	7.2	12.5	Greenish	Yellow-orange
2,7-Pt		5.8	10.1		3.3	(11.5 ${ }^{\text {(}}$)	Sky blue	Red-orange
$4,7-\mathrm{Pt}$		6.1	9.6	-2.0	~ 5.5	>9	Blue-Violet	Red-orange
2,6-Pt		6.7	11.6	2.0	9.5***		Green	None
4,6-Pt		6.1	9.7	0.7	6.6	9.7	Blue	(Very faint)
$6,7 \mathrm{Pt}$	<2.7	6.9	10.0				Violet	None
Group 111								
2,4,7-Pt		3.6			(3.0\%)	9.5	Blue-violet	Dark red-violet
2,4,6-Pt		5.7	$9 \cdot 4$	-2.0	5.2	9.6	Blue-green ${ }^{* * *}$	(Very faint)
4,6,7-Pt				-2.0	6.7	9.5	Blue	(Very faint)
2,6,7-Pt		$3 \cdot 5$	6.7	0.5	6.6	9.1	Upper spot: black-violet	None
							Lower spot: sky blue ****	None
2,4,6,7-Pt					$\sim 3 \cdot 5$	$\sim 9 . j$	Blue	None

[^2]
PHYSICAL AND CHEMICAL PROPERTIES OF PTERIDINES

cations at high acid concentrations. The hydroxy derivatives form anions, the pK decreasing in general with the number of hydroxyl groups present. However, a limit is set by formation of bis-anions-an observation analogous to previous experience in the purine series ${ }^{15}$.

Detection of spots

The ability of pteridines to form metal chelates has been studied by Auberrib. Taking advantage of this property, we have tried to stain the chromatograms by spraying the paper first with a solution of a metal acetate and then with a staining agent, specific for the cation used. Among the more stable metal complexes, the Zn^{++}and the Cu^{++}chelates were the most promising. The former, after spraying with an alcoholic sol ution of diphenylcarbazone, gave intensely red spots. However, since the background was also stained red, only quantities above 50γ could be recognised unequivocally. Copper acetate and diphenylcarbazide, on the other hand, produced pink to red spots on a bluish-gray backgrouncl; spots representing fo γ could be recognised at once and became still more distinct after 24 hours when the background had faded. This proves that the comples pteridine-Cut+-diphenylcarbazide is much more stable than the complex formed in the absence of ptericlines. The results of the staining experiments with copper ion are also included in Table I. This detection method is, however, of limited value, since only certain derivatives give a positive reaction. Pteridines containing a $6-h y d r o x y l$ group produce only a weak color or may not stain at all. Pteridine and $2-\mathrm{Pt}$ could not be tested, since they concentrate in welldefined spots only in solvents containing ammonium chloride. Chloride ions were, however, found to clestroy these complexes. In contrast to the staining procedure, fluorescence in ultraviolet light is of general applicability and was therefore used in all experiments. For this purpose a Mineralight. intraviolet lamp, which emits radiation of about $255 \mathrm{~m} / \mathrm{h}$ was used.

Chromalograplay

All experiments were carried out by the descending method, using Whatman paper No. I. The paper was cleaned by immersion in $0.05 M$ borax (pH about 9) for one hour and then in 10% acetic acid for the same period. Development extended usually over I2 hours, with the solvent front $35-40 \mathrm{~cm}$ from the starting line. In those cases, where the low rate of migration required developing periods of ioo hours (group III in solvent 6 or 8 , see Table II) so that the solvent was dripping off the edge of the paper, R_{F} values were determined by simultaneously running $2,4,7-\mathrm{Pt}$ as reference substance.

RTSULTS

Separation of pteridines with various solvent mixtures

The first solvent tested was 3% ammonium chloride ($=$ solvent 1); which has been introduced for pterine studies by Tscheschis and Korter. As shown in Table II, Re/erences p. $t>2$.
H. KWIETNY, F. BERGMANN
VOL. 2 (I959)
R_{F} values of pteridines in various solvents

Substance	Solient So.								
	I	2	3	4	. 5	6	7	8	9
Pteridine	streaks	0.87	diffuse	(0.75) diffuse	diffuse	(0.44)	0.84	diffuse	0.25
Group I									
${ }_{2}-\mathrm{Pt}$	0.37	0.89	0.66	$\left(0 . S_{3}\right)$ diffuse	diffuse	0.47	0.84	0.23	0.5
$4-\mathrm{Pt}$	0.6	0.88	0.44	0.67	0.48	0.5	0.9_{7}	0.46	0.5
$6-\mathrm{Pt}$	0.57	0.8 I	0.66	0.78	0.63	0.53	0.83	0.49	0.3-0.7 (streaks)
$7-\mathrm{Pt}$	0.58	0.83	0.49	0.6 S	0.64	0.57	0.87	0.49	0.75
Group II									
$2,4-\mathrm{Pt}$	$\left\{\begin{array}{l} 0.56 \\ 0.36 \end{array}\right.$	0.86	0.37	0.64	0.54	0.5	0.80	0.22	0.5
$2_{2,7}-\mathrm{Pt}$	0.48	0.71	0.32	0.51	0.35	0.43	0.77	0.13	
$4,7-\mathrm{Pt}$	0.52	0.79	0.24	0.53	0.35	0.21	0.86	0.24	0.3
2,6-Pt	streaks	streaks	diffuse	streaks	diffuse	0.12	$0.75{ }^{*}$	0.11	2 spots
$4,6-\mathrm{Pt}$	$\left\{\begin{array}{l}0.52 \\ 0.4 \\ 0.19\end{array}\right.$	0.75	0.26	diffuse	diffuse	0.17	0.82	0.15	0.5
$6.7-\mathrm{Pt}$	0.48	0.68	0.25	diffuse	0.45	0.22	0.79	0.13	0.35
Group III									
2,4,7-Pt	0.45	0.63	0.3	0.4	0.2	0.32	0.77	0.13	
2,4,6-Pt	0.5	0.7	0.21	0.5	0.43	0.12	0.76	0.07	
$4,6,7-\mathrm{Pt}$	0.47	0.61	0.17 **	diffuse	0.13 **	0.07	0.75	0.035	0.05
2,6,7-Pt	10.69	10.96	0.1 **	diffuse	$0.17^{* *}$	10.17	10. ${ }_{5}$	0.03**	
	10.47	10.62				10.035	10.7		
$2,4,6,7-\mathrm{Pt}$	0.34 (diffuse)	0.5	0.12	diffuse	0.06	0.06	0.67	0.025	0.05

[^3]column 2, all members of group I , with the sole exception of $2-\mathrm{Pt}$, have about the same R_{F}. Within group II, the R_{F} values of all isomers are again close to each other. However, $2,4-\mathrm{Pt}$ gave two spots and $4,6-\mathrm{Pt}$ even three. The R_{F} of $2,6-\mathrm{Pt}$ could not be measured, because the compound streaks over the whole chromatogram. In group III likewise little variation is observed. All its members develop well-defined, single spots, with the exception of $2,6,7-\mathrm{Pt}$, which gives two spots in accordance with the experience of Admert, Lister anj) Prinersen ${ }^{12}$. An important foature is the sharp separation of group III as a whole from $2,4,6,7-\mathrm{Pt}$, one of the end-products of enzymic oxidation ${ }^{1}$. To summarise: with solvent I there is little differentiation between individual compounds or groups of isomers.

The pH of solvent i was usually between 5 and 6 . It is evident from the $\mathrm{p} K$ values in Table I that in this pH range most pteridines exist as neutral molecules or as mixtures of the latter with anions. It appeared therefore possible that separation might improve, if all substances were present as anions only. The effect of addition of 5% ammonia to solvent 1 was therefore studied (solvent $2, \mathrm{pH} 10.5$; column 3 in Table II). Curiously enough, all R_{F} values increased considerably. Otherwise, the results with solvent 2 were similar to those with solvent I. In group I, it is remarkable that $2-\mathrm{Pt}$ now beliaves like its isomers. In group $\mathrm{II}, 4,6-\mathrm{Pt}$ is concentrated into a single spot, whereas $2,4-\mathrm{Pt}$ still gives two spots. Like in solvent $\mathrm{I}, 2,6-\mathrm{Pt}$ spreads over a considerable length of the paper. The titration curve of $4,6-\mathrm{Pt}$ shows a hysteresis loop, indicating the formation of a hydrate ${ }^{11}$; however, in alkaline media equilibration is very rapic. Therefore, in solvent 2 this derivative does not give more than a single spot. In contrast, $2,6-\mathrm{Pt}$ at alkaline pH represents a mixture of two neutral molecules and two anions ${ }^{12}$ and the slow transition between the different forms makes the formation of a well-defined spot impossible. The behaviour of $2-\mathrm{Pt}$ is very interesting. This derivative is distinguished from its isomers by its exceptionally high $\mathrm{p} K$ value (see Table I). In solvent I, where it is present exclusively as the neutral molecule, it migrates slozer than its isomers, which are in equilibrium with their anionic forms. Usually, the opposite behavior is observed in paper chromatography, ions travel at lower speed than the neutral molecules. However, the reverse relationship holds in general for solvent I and 2 , since the mobile phase contains only water and possesses a higher ionic strength than the stationary phase. As compared to solvent r , solvent 2 is somewhat more suitable for group separation and could indeed be used for certain analytical problems arising from enzymic oxidation reactions ${ }^{1}$.

In the special case of $6-\mathrm{Pt}$, Albert, Brown and Cherseminn ${ }^{10}$ could eliminate streaking by the use of dimethylformamide (DMF) as solvent. In the light of our experience with solvent I and 2, it was decided to test DMF in threc different forms: (a) in combination with neutral solvents only; (b) together with organic acids, and (c) with ammonia.

The combination of 25% DMF with 65% isopropanol and ro $\%$ water ($=$ solvent 3) was selected from about io different mixtures for a more thorough study. The results in Table II, column 4, show that only pteridine and $2,6-\mathrm{Pt}$ give diffuse spots. Group I appears to be divided into two pairs of substances, the members of each References $p: 172$.
pair having identical R_{F} values: 2 - and 6-Pt migrate considerably faster than the pair 4 - and $\boldsymbol{\gamma}$-Pt. In group II and III, the R_{F} values overlap, and similarly no sharp separation is found between group III and $2,4,6,7-\mathrm{Pt}$. A most remarkable feature is the appearance of only a single spot for $2,6,7-\mathrm{Pt}$, a phenomenon observed also with solvent 5. Summarising, it can be said that solvent 3 does net provide the desired solution of the present problem ancl is suitable only for special purposes (e.g. for the separation of a mixture of $2-$ and $4-\mathrm{Pt}$ or of $2,4-$ and $4,7-\mathrm{Pt})$.

In solvent 4, DMF (25%) and isopropanol (65%) were combined with 10% glacial acetic acid instead of water. The results in Table II, column 5, demonstrate the inferiority of this mixture. Many compounds produced diffuse spots and $2,6-\mathrm{Pt}$ showed streaking. Alberet at al. ${ }^{10}$ used DMF as its azeotrope with formic acid (6%). We examined therefore solvent 5, which contains 2.5% formic acid and ro $\%$ water (see Table II, column 6). Although superior to solvent 4, it was still unsatisfactory, because four derivatives gave diffuse spots. However, some new interesting properties came to light: In group I, $4-\mathrm{Pt}$ could easily be separated from $7-\mathrm{Pt}$, analytically a very valuable feature. In group II, $6,7-\mathrm{Pt}$ can be differentiated from $2,4-\mathrm{Pt}$ on the one hand and from the pair $2,7-$ and 4,7 -Pt on the other. In group III, 2,4,6-Pt differs from its isomers by its high RFF value. This group as a whole is also well separated from tetrahydroxypteridine.

More encouraging results were obtained by the addition of 2.5% ammonia (solvent 6; column 7 in Table II). Here, all hydroxy derivatives gave well-defined spots; only pteridine itself yielded a rather elongated spot. In group II, $4,7-\mathrm{Pt}$ and $6,7-\mathrm{Pt}$ had identical R_{F} values; all other members could be separated from this pair and from each other. In group III, excellent separation of all isomers is possible. However, in view of the small rate of migration, development has to be prolonged for more than foo hours. It is also apparent that $4,6,7-\mathrm{Pt}$ can not be distinguished from $2,4,6,7-\mathrm{Pt}$. This problem can, however, be solved with the aid of solvent I or 2 . An important property of solvent 6 is the fact that $4,6,7-\mathrm{Pt}$ can easily be distinguished from both spots characteristic for $2,6,7-\mathrm{Pt}$. This question actually arose in the elucidation of the oxidative pathway of $6,7-\mathrm{Pt}^{1}$.

It should be mentioned that an increase in the ammonia concentration did not produce any improvement over solvent 6 . On the contrary, some of the derivatives of $6-\mathrm{Pt}$, which formed well-defined spots in solvent 6 , startecl to trail again, when 5% ammonia was present. Solvent 6 seems to offer good prospects of solving analytical problems and it was used extensively by us in enzymic studies.

In view of the favorable results obtained by addition of ammonia, we also studied the simple combination of ethanol with this base, in the hope of being able to dispense with the use of the toxic DMF. With 50% ethanol and 2.5% ammonia (solvent 7 ; column S in Table II) all pteridines showed rather high R_{F} values and very little differentiation. The results were in general very similar to those with solvent 2 , but now all compounds formed well-defined spots. A much better separation was achieved by decreasing the percentage of water. Solvent 8 , which contained 80% ethanol and 2.5% ammonia, led to well-concentrated spots-with the sole exception of pteridine References $p .172$.
(see Table II, column 9). In group I, 2 -Pt exhibited a much smaller R_{F} value than the other mono-hydroxy derivatives, which all migrated at about the same rate. In group II, two separate sections can be distinguished: 2,4 - and $4,7-\mathrm{Pt}$ possess a much higher R_{F} than all other members, but these were again not clearly differentiated from each other. In group III, good separation can be effected by developing for a prolonged period. Solvent S thus revealed properties similar to those of solvent 6 and proved indeed very useful for special analytical purposes.

In Table II, we have also inclucled the results, reported by Armerit at al. ${ }^{0-12}$ for a butanol-acetic acid-water mixture. Besides streaking, the appearance of more than one spot and the overlapping of R_{F} values between different groups makes it difficult in most cases to use this solvent for the separation of mixtures containing pteridines with varying number of hydroxyl groups.

TABLE III

RECOVERY OF PTERIDINES FROM PAPER CHROMATOGRAMS

For these experiments. So γ of each ptericline were spotted on the starting line over a length of $S \mathrm{~cm}$. After development with solvent σ, the spots were marked under ultraviolet light, cat out and extracted with 8 ml of 0.1 M phosphate buffer, pll 8.o. The extracts were read in a Beckman Model DU ultravinlet spectrophotometer at the absorption maxima given in column 2 of the Table. Paper blanks of the same size were treated in the same manner, and the optical density of the blank extracts at the relevant wavelengths was subtracted from the readings of the pteridine extracts. The derivatives marked with an asterisk showed-bosicles their individual $\lambda_{\text {max }}-$ an additional peak at $313 \mathrm{~m} \mu$. For pteridine and $2-1 \mathrm{P}$, solvent 2 was used for development, since in solvent 6 these two compounds do not concentrate satisfactorily (see Table IT).

Substalict		\% Reconery
Ptericlino	298	74
Group 1		
2-I't	310	83
4-1.t	331	$83 *$
6-1't	289:358	8
7- ${ }^{\text {Pt }}$	328	77
Group II		
$2,4-\mathrm{Pt}$	270; 328	90*
2,7-Pt	34.5; 36r	56
$4,7-1 \mathrm{Pt}$	- 327	$78 *$
2,6:Pt	298	53
4, 6-Pt	281; 359	89
6,7-Pt	320;336	88
Group Jir		
2,4,7-Pt	275; 328	90
2,4,6-Pt	381	82**
4, 6,7-Pt	317;330	78^{*}
2,6,7-PL	354	94
2,4,6,7-13t	290; $332 ; 346$	8_{7}

Recovery of pteridines from paper chronnatograms

For the evaluation of the results of enzymic reactions, it is of importance to determine individual pteridines quantitatively after their chromatographic separation. We have therefore extracted the spots with o.I M phosphate buffer of pH S.o and have measured the concentrations spectrophotometrically. As shown in lable III, in most cases a recovery of $70-90 \%$ was achieved. Notable exceptions are $2,6-$ and $4,6-\mathrm{Pt}$, where not much more than half of the amount applied to the paper, was found in the extract. Incomplete recovery of pteridines may be ascribed to two different factors: Some of the compounds are sensitive to air or light, as observed previously by Ambert of al."-12 However, some derivatives of $4-\mathrm{Pt}$, which are characterized by their great stability, developed a new absorption maximum at $313 \mathrm{~m} \mu$. These compounds are marked in Table III by an asterisk. No explanation for this phenomenon las been found, since all substances involved form well-defined, single spots, withont any indication of the presence of a common contaminant.

The result obtained with $2,6,7-\mathrm{Pt}$ is especially interesting. After chromatography in solvent 6, two spots are obtained. From the lower one ($R_{F}=0.035$), almost 80% of the total amount was recovered, exhibiting $\lambda_{\max }=353 \mathrm{~m} \mu$. The extract from the upper spot ($R_{F}=0.17$) did not absorb at all at this wavelength, but showed a new maximum at $270 \mathrm{~m} \mu$, which was absent in the original solution. The optical density of the second extract at its maximum was, however, so small, that only a minor part of the total material could have been present in the upper spot. While these results inclicate separation of $2,6,7-\mathrm{Pt}$ into two stable entities, we can confirm the observation of Albert of al. ${ }^{22}$ that cach component, upon re-chromatographing, again produces a pair of spots.

DISCUSSION

The results given in Table II demonstrate that no single solvent combination is suitable for the separation of all 15 hydroxylated pteridines. However, in actual problems only certain homologs and isomers occur together. Solvent 6 proved most suitable for the differentiation of such mixtures. The combined use of solvents 6,2 and 8 has enabled us to solve all analytical problems encountered in enzymic reactions ${ }^{1}$.

In the pteridine series, the R_{F} values decrease regularly with an increase in the number of hydroxyl groups. This observation contrasts with the effect of non-polar substituents. For example, it is well-known that in homologous series the stepwise introduction of methyl or methylene groups inoreases the rate of migration ${ }^{17}$, 18. When $\log \left(I / R R_{F}-I\right)$ is plotted as a function of n, the number of identical substituents attached to a fundamental structure, a straight line should be obtained ${ }^{19}$. For methylated homologs this line exhibits a negative slope ${ }^{18}$, i.e. the free energy of transfer from the stationary to the mobile phase increases regularly with each additional methyl group. In Fig. I we have plotted the above function for the R_{F} values, measured in solvent 2, to demonstrate the positive slope of the straight line, i.e. the decrement of ΔF, the free energy of transfer, for each additional hydroxyl group. Since ΔF is Refcrences p. 172 .
related to the distribution cocflicient α by the equation $\Delta F=R T \ln \alpha$, the reversed slope in Fig. I is simply an expression of the fact that hydroxyl groups increase the affinity of a given structure for the stationary (i.e. aqueous) phase.

Fig. I also demonstrates that the linear relationship between $\log \left(I / R_{R}-\mathrm{I}\right)$

Fig. 1. Log (1/RF-1) as a function of n, the number of hydroxyl groups attached to the pteridine nucleus. The values used in this graph refer to solvont 2 in Table 1 l . Numbers inclicate the position of the hydroxyl groups. Note the logarithmic scale on the ordinate. The line drawn shows that there is a linear relationship for the following two series: (a) Ptericline $\rightarrow 6-\mathrm{P} \mathrm{t} \rightarrow 4,6-\mathrm{Pt} \rightarrow 4,6,7-\mathrm{Pt} \rightarrow$ $2,4,6,7-\mathrm{E} t:(\mathrm{b}) \mathrm{Ptericline} \rightarrow 7-\mathrm{P} \mathrm{t} \rightarrow 2,7 \mathrm{P} \mathrm{P} \rightarrow 2,6,7-\mathrm{Pt}(\mathrm{Or} 4,6,7-\mathrm{Pt}) \rightarrow 2,4,6,7-\mathrm{Pt}$.
and n, the number of hydroxyl groups in the pteridine nucleus, holds only for certain derivatives, but is not of general validity. The spread of the R_{F} values of isomers reveals again the profound influence of the position of hydroxyl groups on the physical properties of ptericlines. This influence is analogous to the marked effect of the position of hydroxyls on the chemical behavior of pteridines ${ }^{10-12}$.

ACINNOWI.EDGEMENTS

The authors wish to express their sincere thanks to Prof. A. Alderer, Department of Medical Chemistry, The Australian National University, Canberra, Australia, for his constant advice and gencrous supply of materials. The authors are inclebted to Mr. M. Chamovity for technical assistance.

SUMMARI
Methods for the paper-chromatographic separation of hydroxylated pteridines have been developed.

The dependence of the R_{F}. values of pteridines on the presence of organic acids or ammonia in the solvents used and on the number and position of hydroxyl groups in the heterocyclic nucleus has been discussed.

TREFERENCES

1 F. Bergmann and H. E゙wietny, Biochim. Biaphys. Acta, (r959), in the press.
${ }^{2}$ P. M. Good and A. W. Johnson, Nature, 163 (1949) 3 I.
3 J. Hirata, K. Nakanishi and H. Kikkawa; Science, int (i950) 608.
4 A. G. Renfrew and P. C. Piatt, J. Am. Pharm. A ssoc., Sci. Ed., 39 (1950) 657.
:S. Hayano, Tgaliu to Seibutsugalize, 17 (1950) $322 ;$ Chem. Abstr., 46 (1952) 2156.
© F. Weygand, A. Wacker and V. Schmied-Iowarzik, Expericulici, 6 (1950) isa.
7 R. Tschesche and F. Morte, Chem. Ber., 84 (1951) 641.
8 R. Tschesche and F. Torte, Chem, Ber., S4 (r95I) Boi.
9 A. Albert, D. J. Brown and G. Cheeseman, J. Chem. Soc., (1951) 474.
10 A. Albert, D. J. Brown and G. Cheeseman, J. Chem. Soc., (1952) 1620.
11 A. Albert and D. J. Broivn, J. Chem. Soc., (1953) 74.
12 A. Albert, J. H. Lister and C. Pedersen, J. Chem. Soc., (ig.5G) $4 \sigma 2 \mathrm{I}$.
13 lR. MUNIER, Bull. soc. chim. France, (1952) 852.
14 M. A. Schou, Arch. Biochem. Biophys., 28 (1950) 10.
16 F. Bergmann and S. Dikstein, I. Am. Chem. Sog., 77 (1955) G91.
16 A. Albert, Biochem. J., 54 (1953) 646.
17 J. M. Bremner and R. H. IKenten, Biochem. J., 49 (1951) 65 I .
14 S. Dikstein, F. Bergmann and M. Chaimovitr, J. Biol. Chein., 22. (1950) 239.
10 A. J. P. Martin, in R. T. Villiams, Biochem. Soc. Symposia (Cambridge, Fingl.), 3 (1949) 4.
20 J. H. Lister, G. IR. Ramage and E. Coates, J. Chem. Soc., (I954) 4109.
01 A. Albert; D. J. Brown and H. C. S. Wood, J. Chem. Soc., (1956) 2066.
Received July ist, 195 S

[^0]: * His investigation forms part of the 1 h. D. thesis of H. Nwierns, submitted to tho Faculty of Science, The Hebrew University, Jerusalem.

[^1]: * Nof the sake of brevity, the pteridines will be designated as follows : f hydroxypterichine -f-1't; 2,4 -dilydroxyptericline $=2,4-P t ; 4,6,7$-trihydroxypteridine $=4,6,7-\mathrm{Pt}$, etc. All mono lydroxy derivatives are classified as group 1 , all dihydroxy derivatives as group II and all trihyclroxyptericlines as grouplII.

[^2]: * It should be noted that the color of the spots under ultraviolet irradiation depends not only on the concentration of the substances, but also on the pH of the solvent used for chromatography. The colors reported are observed when the solvent contained ammonia.
 ** The absorption maximum of pteridine remains constant at $29 \mathrm{~m} \mu$ between pH 4 and I 2 . Abore pH 12 , it jumps to $320 \mathrm{~m} \mu$, indicating ionization due to hydration. This change has been reported previously by Lister, Ramage and Coates ${ }^{20}$ and Albert, Brown and Woodel.
 *** The $\mathrm{p} K$ of 9.5 for $2,6-\mathrm{Pt}$ is a pseudo constant, characteristic for the equilibrium mixture of $2,6-\mathrm{Pt}$ and its hydrate. The true ionization constants of Albert et al. belong to a single species only, because they are determined before equilibration can take place.

[^3]: * Most of the material accumulated in a "head" with green fluores-. Solvent $\ddagger: 65 \mathrm{ml}$ isopropanol +25 ml DMF + Ic ml glacial acetic acid. Solvent $5: 65 \mathrm{ml}$ isopropanol $+22.5 \mathrm{ml} \mathrm{DMF}+2.5 \mathrm{ml} 90 \%$ formic
 acid +10 ml water acid + 10 ml water.
 Solvent 6:65 ml isoprop

 Solvent 6:65 ml isopropanol +25 ml DMF $+10 \mathrm{ml} 25 \%$ ammonia.

